SMOOTHED PARTICLE
HYDRODYNAMICS

Williaom Lucas




SO, SMOOTHED
PARTICLES...

« Developed inifially by Lucy (1977) and Gingold &
Monaghan (1977).

* SPH represents a contfinuous fluid as a system of
discrete particles, each with a mass and ‘extent’.

« This means the method is Lagrangian — our
measurement points, the grid, are the particles, and
they move with the flow.

» Originally developed in astrophysics, but now used in
many fields.



SO, SMOOTHE
PARTICLES.

* [N two dimensions, with uniform mass particles
increasing in density towards the lower right:

‘fuzzy’
parficles

(very crudely)
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THE BASIS OF SPH |

« SPH uses interpolation: any quantity f(r) can be
smoothed using a kernel W(r,h) where h is the
smoothing length.

« At any point the smoothed value of f is then

Fw) = [ FEOWE =

 The kernel must normalise and as h becomes
vanishingly small:

}lLiL%W(r—r’,h) =4(r — 1)
lim (f(r)) = f(r)

h—0



THE BASIS OF SPH I

« Butit’s still an integral...

« Convert to a sum over particles by replacing the
infinitesimal volume element with the volume for a
particle b:

mp
Pb

AVy =

 Then:



THE BASIS OF SPH I

 We also want the gradient of f. From integration by parts:
/f W(lr—r'|,h)ndS — /f WW(|r —r'|, h)d°r

o |If the kernel is compact — it goes to 0 beyond some
distance - then the surface term also becomes 0.

« Changing to use the gradient with respect to r rather
than r’ and switching to summation as before gives:

N

(V) = T f () VW (e — 1) )

1 Pb



THE BASIS OF SPH IV

* The kernel should be peaked and even (Benz 1990) like
a Gaussian to ensure small O(h?) errors.

* The kernel should be compact (previous slide).

* Very often a cubic spline (Monaghan & Lattanzio 1985)
is used. For a 3D kernel, with g =r / h, this is:

e

1 — %qQ + %q‘g where 0 < g < 1,
Wi(r,h) = —3 i(2 —q)° where 1 < ¢ < 2,
0 elsewhere
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THE BASIS OF SPH V

* The choice of kernel is important — having a peaked,
even, Gaussian like function means that the error is
small (second order in h) —we can drop the angled
brackets from now on.

« And making compact means that we don't have to do
the sum over any particles outside the kernel as they
conftribute nothing!

« Find nearby ‘neighbour’ particles, and that's all you
need.

« Choose h's value to give ~50 neighbours (not too
many, not too few). For astrophysics, we also let h vary
throughout the fluid.



SPH CON

DENSE

D

« SPH particles represent a fluid element with mass m and
a kernel to make it fuzzy with smoothing length h.

» Pick a particle
which we'll call

a

* The kernel extends as far as 2h and contains Ny g

neighbour particles within that distance.

* The symmetrised kernel (mean h or mean W) between

a and any neighbour b is called W ..



SPH CONDENSED

« Calculate any smoothed quantity for a by looping over
neighbours b smoothed by the kernel with

mpy
fa — Z Ebeab
b

« We're just summing a lot of overlapping not-quite-
Gaussians.

» Calculate the smoothed gradient of the same with

m
vfa — Z p_bbfbvaWab
b



FLUID EQUATIONS |
MASS CONTINUITY

« Substitute the density into the SPH equation:

Pa — Z mbWab
b

« Or as a fime derivative, with v, = v, —v,.:

dpa
dt

E MpVab * va,‘/va,b
b

« Automatically conserves mass!



FLUID EQUATIONS I
MOMENTUM EQUATION

- The Lagrangian momentum equation with no external

forces is

dv_ VP

at -~ p
« From here we can get for particle a, using an idenfity

for the pressure gradient and bringing in the SPH
gradient equation (see Monaghan 1992)

dVa Pb Pa)
— mpy | — + — Vavvab
i 2m (s

« Momentum conservation is guaranteed!




FLUID EQUATIONS Il
ENERGY EQUATION

o Slightly differently, look at the Eulerian energy equation:

ou P

« Multiply by the kernel and integrate over its volume (as
in Benz 1990) to get

du,
dt

P,
— ,0_2 Z mMpyVap VCLWab
a

« Summing the total change in energy over all particles
again shows that it is conserved.



FLUID EQUATIONS Il
ENERGY EQUATION

« Alternatively, start with the Lagrangian energy equation

du P

= _V-v

dt 0

» This can be combined with the previous form to obtain

dua 1 Pb Pa
— 5 BG) Gy a 'vaWa
i =3 2 (G 4 ) v T

 This has explicit conservation of energy between particle
pairs, but it can be possible to get negaftive energies so
our code (Benz 1990) uses the previous form.



THE SMOOTHING LENGTH

* If his allowed to vary, then how is it calculated?

» For ‘standard’ SPH it's evolved alongside the other
quantities.

dh 1

« Alternatively, we can use more modern ‘grad-h SPH’
which properly takes info account h’s spatial variation.
This can be more complex and also requires changes
to the momentum and energy equations.



FINAL POINTS

« The above equations are for an inviscid fluid -
shocks can’t form!

 This means an extra arfificial viscosity 11, has tfo be
calculated and included in the momentum and
energy equations to allow for dissipation.

« To run a simulation, you really only need three more
things:
* An equation of state to relate pressure, temperature,
density, internal energy...

« An integrator to take the time derivatives and move
particles forwards in time (leapfrog, Runge-Kutta...)

* Your initial conditions!



EXAMPLES




Matthew Bate

University of Exeter
= Bate MR., 2018, astro-ph/TB0T 07721



Mooring test with DualSPHysics

» LiveSlides web content

To view

Download the add-in.
liveslides.com/download

Start the presentation.
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http://adsabs.harvard.edu/abs/1992ARA%26A..30..543M
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http://adsabs.harvard.edu/abs/2009NewAR..53...78R
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CODES YOU CAN USE

« Phantom:
https://bitbucket.org/danielprice/phantom/wiki/Home

 SWIFT:
http://icc.dur.ac.uk/swift/

« GANDALF:
http://gandalfcode.qgithub.io/

« GADGET:
https:// wwwmpa.mpa-garching.mpg.de/gadget/

* DualSPHysics:
http://dual.sphysics.org/

* PySPH:
https://aithub.com/pypr/oysph



https://bitbucket.org/danielprice/phantom/wiki/Home
http://icc.dur.ac.uk/swift/
http://gandalfcode.github.io/
https://wwwmpa.mpa-garching.mpg.de/gadget/
http://dual.sphysics.org/
https://github.com/pypr/pysph

ARTIFICIAL VISCOSITY |

* One of SPH's major problems: by default, it doesn’t do
shocks! There's no dissipation, entropy is constant.

« We need to bring dissipation in somehow, so we
intfroduce artificial viscosity (Monaghan & Gingold 1983):

. 2
OCablabTBliah  \where vy - Ty < 0
gy = Pab

0 elsewhere




ARTIFICIAL VISCOSITY |l

* This allows for the conversion of kinetic o thermal
energy.

 The momentum and energy equations become

dVa Pb Pa
— my|\ — + —F5 + Hab) vaWab
i = m (5

du,

dt

P, 1
= ,0_2 Z myVab * VaWap + 5 Z myllepvay - VaWap
a b



ARTIFICIAL VISCOSITY Il

* Very offten a = 1 and 8 = 2 — these conftrol the strength
of the viscosity.

« The main problem is making sure that the artificial
viscosity doesn’'t do much (or anything!) away from
shocks - a problem when you have shear flows.

« Options are to use a switch (Balsara 1995) or to make «a
a variable which grows in shocks and then with time
decays away (Morris & Monaghan 1997).

« SPH is still smoothed — discontinuities don't exist and ¢
shock will be a transition over about 3h.



