
Coding, Debugging, and Profiling
Dr. Peter WoitkeDr. Peter Woitke

 age of ~10: first CASIO programmable calculatorCASIO programmable calculator
 age of ~12: first computer (Spectrum ZX81Spectrum ZX81): BASIC, Assembler (chess)
 ATARI STATARI ST: many things in GFA-Basic, including science, games, computer go

(European computer go champion 2000 & 2001 with “GoAhead”)
 LINUXLINUX: F77 (my science) and C-programming (compter go “Suzie”)
 2003-2009: F90 + MPI FLASH hydrodymics + dust formation + MC RT,

running on parallel super-computersparallel super-computers
 2009-now: F90 + OpenMP disc simulation software “ProDiMo”

 astrochemistry, radiative transfer, heating & cooling → observations
 ~100 users world-wide, ~5 programmers, SVN-based

● since 2015: various science F90 projects, GIT-based, for example “GGchem”
 using python for making plots

● since 2012: AS3013 Computational Astrophysics (F90, python)
 AS4012 Stars and nebulae II (Mathematica, python)

Resources
● https://software.intel.com/en-us/parallel-studio-xe/choose-download/student-linux-fortran

– ifort : the INTEL FORTRAN compiler
– idb : the INTEL DEBUGGE

– vtune : the INTEL PROFILER
● free Linux

– gfortran : the GNU FORTRAN compiler

– gdb : the GNU DEBUGGER (not graphical)

– gprof : the GNU PROFILING Library (not graphical)

– gprof2dot.py, use with dot binary (→ package XDot)

● from http://www-star.st-and.ac.uk/~pw31/CodeCake.tgz:
short example programs

– debug.f90

– bench.f90 and bench.py

https://software.intel.com/en-us/parallel-studio-xe/choose-download/student-linux-fortran
http://www-star.st-and.ac.uk/~pw31/CodeCake.tgz

Debugging
 good for: (1) find problems,

 (2) better understand your code
 you need a reproducible problemreproducible problem (which occurs after t < some minutes)
 most frequent problemsmost frequent problems:

― incorrect variable declaration (rank / dimension / type)
― incorrect argument lists (rank / dimension / type)
― index errors
― NaN production
― forgotten / wrong initialisation

 use debugging compiler flagscompiler flags:

gfortran: -g -O0 -fbacktrace -fcheck=all -Wall -pedantic
 -Wimplicit-interface
 ifort: -g -O0 -traceback -fpe0 -check all -warn all -fp-stack-check
 -gen-interfaces -warn interfaces

 try different compilers different compilers (!)
 use “print & stop”“print & stop”
 graphical debuggers: graphical debuggers: idb, there is also ddd, gdbgui (both using gdb), ...

Profiling
 good for: (1) identify the time-consuming parts of your code,

 (2) better understand (!) and accelerate your code
 most frequent issuesmost frequent issues:

― inefficient algorithm
― inefficient memory layout
― inefficient parallelisation

 use profiling compiler flags compiler flags (for gprof):
gfortran: -g -O0 -p
 ifort: -g -O0 -p

 try: (1) UNIX time command
 (2) self-made in codeself-made in code, using CPU_TIME() and SYSTEM_CLOCK()
 (3) gprof myprogram → call and time statistics of subroutines/functions
 (4) gprof -l myprogram → call and time statistics of code lines
 (5) gprof myprogram | gprof2dot.py | dot -Tpng -o gprof.png
 → graphical output of (3)

 graphical graphical profiler profiler analysis: vtune
 how to improve performance?

― can you use external packagesexternal packages (LAPACK, FFTW, ODE-solver, …)?
― think about memory re-organisationmemory re-organisation, e.g. array(fast,slow,slower)

Self-made profiling

 implicit none
 real*8 :: t0,t1,ut0,ut1
 integer :: count, count_rate,count_max

 call cpu_time(t0)
 call SYSTEM_CLOCK(count, count_rate, count_max)
 ut0 = DBLE(count)/DBLE(count_rate)
 ...
 call cpu_time(t1)
 call SYSTEM_CLOCK(count, count_rate, count_max)
 ut1 = DBLE(count)/DBLE(count_rate)
 print*,"total usertime[sec] = ",ut1-ut0
 print*,"total CPU time[sec] = ",t1-t0

