
Things every computational physicist should
be aware of…

Lewis McMillan

lm959@st-andrews.ac.uk

github.com/lewisfish

T. Geijtenbeek et al. (2013)

mailto:lm959@st-andrews.ac.uk

Introduction

• I’m not an expert on any of these topics

• Not an exhaustive list by any means

Talk Contents

• Binary

• Floating-Point numbers

• Random Numbers

• Various Algorithms

This Photo by Unknown Author is licensed under CC BY

http://share-everythings.blogspot.com/2011/03/when-you-do-it-request-service-on-male.html
https://creativecommons.org/licenses/by/3.0/

Binary

• Representation of numbers in base 2

• Used in almost every computer due to “on/off”

• Represent the number 30 in base 2

100 10 1

0 3 0 = 10 + 10 +10 = 30

32 16 8 4 2 1

0 1 1 1 1 0 = 2 + 4 + 8 + 16 = 30

Binary

• Represent the number 30 in base 2

100 10 1

0 3 0 = 10 + 10 +10 = 30

32 16 8 4 2 1

0 1 1 1 1 0 = 2 + 4 + 8 + 16 = 30

011110b = 30

• 1 bit is either 0 or 1

• 1 byte is 8 bits

Floating-point numbers

• Floating-point numbers should we be worried?

(Photo by Anthony Sweeney/U.S. Army Europe)

• Maybe…

• Really depends on what you are

doing

www.gao.gov/assets/220/215614.

pdf

0.1 + 0.2 = 0.3000000000000004

http://www.gao.gov/assets/220/215614.pdf

Floating-point numbers

• What are they?

(−1)𝑆∗ 1.𝑀 ∗ 2(𝐸−127)• S = sign

• M = mantissa

• E = exponent

• 32 bits used to represent numbers in IEEE 754 standard

F. Sanglard (2017)

Floating-point numbers

(−1)𝑆∗ 1.𝑀 ∗ 2(𝐸−127)• S = sign

• M = mantissa

• E = exponent

• Represent e=2.72 in floating-point

• S = 0

• E = 128

• M =
2.72−2

4−2
=0.36

F. Sanglard (2017)

Floating-point numbers

(−1)𝑆∗ 1.𝑀 ∗ 2(𝐸−127)• S = sign

• M = mantissa

• E = exponent

• Represent e=2.72 in floating-point

• S = 0 0b

• E = 128 10000000b

• M =
2.72−2

4−2
= 0.36 ∗ 223 01011100001010001111011b

0 1 0 0 0 0 0 0 0 0 1 0 1 1 1 0 0 0 0 1 0 1 0 0 0 1 1 1 1 0 1 1
(−𝟏)𝟎∗ 𝟏. 𝟑𝟔 ∗ 𝟐(𝟏𝟐𝟖−𝟏𝟐𝟕)

Floating-point numbers

0 1 0 0 0 0 0 0 0 0 1 0 1 1 1 0 0 0 0 1 0 1 0 0 0 1 1 1 1 0 1 1

2.72 != 2.7200000286102294921875

• Main problem in floating-point representation

• Can’t exactly represent all real numbers!

Floating-point numbers

• Muller’s recurrence

𝑓 𝑦, 𝑧 = 108 −
815 − ൗ1500

𝑧
𝑦

𝑥0 = 4 𝑥1 = 4.25𝑥𝑖 = 𝑓(𝑥𝑖−1, 𝑥𝑖−2)

Floating-point numbers

Floating-point numbers

• Can’t exactly represent all real numbers!

• Errors can accumulate

• Multiplication and division are “safe”

• Addition and subtraction can be dangerous

• Loss of digits can be ok or catastrophic

• The more calculations are done, i.e. iterative

algorithms, the more danger there usually is

Floating-point numbers

If you really want to know

more…

https://floating-point-gui.de

https://randomascii.wordpress.c

om/category/floating-point

https://doi.org/10.1145/103162.1

03163

https://floating-point-gui.de/
https://randomascii.wordpress.com/category/floating-point
https://doi.org/10.1145/103162.103163

Random numbers

• Is the random number

generator I use “random”

enough??

• Maybe

• So long as you use a generator

that passes “basic” tests

should be ok

• Depends on application

• Linear Congruent Generator (LCG)

• Choose a, c and M

• Can make “good” and “bad” choices

Random numbers

• A good RNG is fast, has a long period and passes various tests

𝑦𝑖+1 = 𝑚𝑜𝑑(𝑎𝑦𝑖 + 𝑐,𝑀)

Random numbers

• A good RNG is fast, has a long period and passes various tests

• Ran

• Numerical recipe’s own RNG

• “Minimal random number generator of Park and Miller

combined with a Marsaglia shift sequence”

Random numbers

• A good RNG is fast, has a long period and passes various tests

• Fortran’s internal

• No defined algorithm

• Gfortran: xorshift1024*

Random numbers

Random numbers

Random numbers

• Simple test: test correlation of pairs of numbers

• LCG

• Ran2

• Fortran’s internal

ε 𝑁, 𝑛 =
1

𝑁
σ𝑖=1
𝑁 𝑥𝑖𝑥𝑖+𝑛 − 𝐸 𝑥 2 𝑛 ∈ ℕ

Random numbers

Random numbers

Random numbers

Random numbers

• From ‘Numerical Recipes’

• Never use a LCG

• Never use a RNG with period < 264

• Never use a RNG that warns against using low-order bits

Random numbers

• Don’t use via http://www0.cs.ucl.ac.uk/staff/d.jones/GoodPracticeRNG.pdf

• Perl’s standards RNG

• Python’s random() before v2.3

• Java.util.Random

• C-library rand(), random() or drand48()

• Matlab’s rand

• Mathematica’s SWB generator

• ran0() or ran1() from ‘Numerical Recipes’

http://www0.cs.ucl.ac.uk/staff/d.jones/GoodPracticeRNG.pdf

Random numbers

• Recommended by H.Katzgraber www.arxiv.org/abs/1005.4117

• Use WELL generators, Mersenne twister or multiplicative lagged

Fibonacci generators

• Don’t use UNIX inbuilt or any of ‘Numerical Recipes’ RNG

http://www.arxiv.org/abs/1005.4117

Random numbers

• Further reading:

• https://link.springer.com/chapter/10.1007/978-3-642-21551-3_3

• http://www0.cs.ucl.ac.uk/staff/d.jones/GoodPracticeRNG.pdf

• https://arxiv.org/pdf/1005.4117.pdf

• Numerical Recipes / W. Press, S. Teukolsky, W. Vetterling, and B.

Flannery

https://link.springer.com/chapter/10.1007/978-3-642-21551-3_3
http://www0.cs.ucl.ac.uk/staff/d.jones/GoodPracticeRNG.pdf
https://arxiv.org/pdf/1005.4117.pdf

Algorithms

• Brief tour of:

• Monte Carlo Method

• Finite difference method

• Bounding volume hierarchy

Algorithms – Monte Carlo Method

• What?

• Random sampling to obtain numerical results

• Why?

• Radiation transport, statistical physics

• AI, CGI

• How?

• Simplest example: estimation of π

Algorithms – Monte Carlo Method

• How?

• Simplest example: estimation of π

• Throw darts at board

• Score darts that hit in circle

• π~4*Nh/N

Algorithms – Monte Carlo Method

• How?

• Compute CDF from PDF

• Compute inverse of CDF

• Obtain random number

• Compute

𝐶𝐷𝐹 𝑥 = න

0

𝑥

𝑝 𝑥′ 𝑑𝑥′

𝐶𝐷𝐹−1 𝑥

𝜉

𝑋𝑖 = 𝐶𝐷𝐹−1(𝜉)

Algorithms – Monte Carlo Method

• How?

• Photon interaction probability

• Random interaction probability

𝑒−𝜏

= −ln(𝜉)

Algorithms – Monte Carlo Method

• Further reading:
http://www.pbr-book.org/3ed-

2018/Monte_Carlo_Integration.html

http://www-star.st-

and.ac.uk/~kw25/teaching/mcrt/mcrt.html

https://www.scratchapixel.com/lessons/mathematics-

physics-for-computer-graphics/monte-carlo-methods-

mathematical-foundations/quick-introduction-to-

monte-carlo-methods

http://www.pbr-book.org/3ed-2018/Monte_Carlo_Integration.html
http://www-star.st-and.ac.uk/~kw25/teaching/mcrt/mcrt.html
https://www.scratchapixel.com/lessons/mathematics-physics-for-computer-graphics/monte-carlo-methods-mathematical-foundations/quick-introduction-to-monte-carlo-methods

Algorithms – Finite difference Method

• What?

• Numerical method to solve PDE’s & ODE’s

• Why?

• Easily adaptable method

• How?

• Taylor series approximation of derivatives

Algorithms – Finite difference Method

• Solve heat equation

• Forward

• 2nd order central

𝜕𝑇

𝜕𝑡
= 𝛼∇2𝑇

𝑑𝑓

𝑑𝑥
=
𝑓𝑖+1 + 𝑓𝑖

Δ𝑥

𝑑2𝑓

𝑑𝑥2
=
𝑓𝑖−1 − 2𝑓𝑖 + 𝑓𝑖+1

Δ𝑥2

Algorithms – Finite difference Method

• Solve heat equation
𝜕𝑇

𝜕𝑡
= 𝛼∇2𝑇

𝑇𝑖
𝑛+1 = 𝑇𝑖

𝑛 + 𝛼Δ𝑡
𝑇𝑖−1
𝑛 − 2𝑇𝑖

𝑛 + 𝑇𝑖+1
𝑛

Δ𝑥2

Algorithms – Finite difference Method

• Further reading:
• Finite difference schemes and partial differential equations / J. Strikwerda

• Numerical Solution of Partial Differential Equations / D.Mayers and K. W.

Morton

• Finite difference methods in heat transfer / M. Özişik

Algorithms - BVH

• What?

• Tree based data structures

• Why?

• Can drastically speed up

computations

• How?

• Partitions space more efficiently

Algorithms - BVH

Algorithms - BVH

• Works in 2D and 3D

• Used in image compression

• Used in n-body simulations

• Used in fluid simulations

• Plus many other fields

Algorithms - BVH

• Further reading

• “Physics” based

• https://doi.org/10.1038/324446a0

• http://arborjs.org/docs/barnes-hut

• “Computer” based

• http://www.pbr-book.org/3ed-

2018/Primitives_and_Intersection_Acceleration/Further_Reading.html

• https://www.scratchapixel.com/lessons/advanced-

rendering/introduction-acceleration-structure

https://doi.org/10.1038/324446a0
http://arborjs.org/docs/barnes-hut
http://www.pbr-book.org/3ed-2018/Primitives_and_Intersection_Acceleration/Further_Reading.html
https://www.scratchapixel.com/lessons/advanced-rendering/introduction-acceleration-structure

• Slides available at: https://code-and-cake.github.io

Questions

https://www.youtube.com/watch?v=pgaEE27nsQw

https://code-and-cake.github.io/
https://www.youtube.com/watch?v=pgaEE27nsQw

