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OK, Deep Learning has outlived its usefulness as a buzz-phrase.
Deep Learning est mort. Vive Differentiable Programming!



Three kinds of automated differentiation

e Symbolic differentiation (e.g. Mathematica)
o Exact method of calculating derivatives by manipulating symbolic
expressions
o Memory intensive and very slow
e Numerical differentiation (e.g. Finite differences)
o Easy to code, but subject to floating point errors, very slow in high

dimensions
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e Automatic differentiation (e.g. PyTorch, Tensorflow)
o Exact, speed comparable to analytic derivatives

o Difficult to implement



What is Automatic Differentiation?

A Simple Automatic Derivative
Evaluation Program

R. E. WENGERT
General Electric Company,* Syracuse, New York

A procedure for automatic evaluation of total/partial de-
rivatives of arbitrary algebraic functions is presented. The
technique permits computation of numerical values of deriva-
tives without developing analytical expressions for the deriva-
tives. The key to the method is the decomposition of the given
function, by introduction of intermediate variables, into a series
of elementary functional steps. A library of elementary func-
tion subroutines is provided for the automatic evaluation and
differentiation of these new variables. The final step in this
process produces the desired function's derivative.

The main feature of this approach is its simplicity. It can be
used as a quick-reaction tool where the derivation of analytical
derivatives is laborious and also as a debugging tool for
programs which contain derivatives. 4



What is Automatic Differentiation?

e A function written in a given programming language (e.g. Python, C++) is a
composition of a finite number of elementary operations such as +, -, *, /,
exp, sin, cos, etc.

e We know how to differentiate those elementary functions

® Therefore we can decompose an arbitrarily complicated function,
differentiate the elementary parts and apply the chain rule to get exact

derivatives of function outputs w.r. to inputs



Forward mode Automatic Differentiation
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Reverse mode Automatic differentiation (Backpropagation)
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Reverse mode Automatic differentiation (Backpropagation)
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Reverse mode Automatic differentiation (Backpropagation)
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Reverse mode Automatic differentiation (Backpropagation)
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Forward vs. reverse mode Automatic Differentiation

e Forward mode automatic differentiation
o We accumulate the derivatives in a forward pass through the graph,
can do this parallel with function evaluation, differentiate w.r. to
input
o Don’t need to store the whole graph in memory
o If we have multiple inputs we need to do a forward pass for each
input
e Reverse mode automatic differentiation (backpropagation)
o We accumulate the derivatives in a reverse pass through the graph,
differentiate intermediate quantity w.r. to output
o The computation can no longer be done in parallel with the function,
need to store whole graph in memory

o One reverse-mode pass gives us derivatives w.r. to all inputs!
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Autodiff in Python: Autograd module

® Automatic differentiation in Python available via Autograd module, can
be installed withpip install autograd

® Autograd can automatically differentiate most Python and Numpy code,
it handles loops, i f statements and recursion and closures

e (Can do both forward mode autodiff and backpropagation

® Can handle higer-order derivatives
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Autodiff in Python: Autograd module

>>> import autograd.numpy as np # Thinly-wrapped numpy

>>> from autograd import grad # The only autograd function you may ever need
>>>
>>> def tanh(x): # Define a function

y = np.exp(-2.0 * x)
return (1.0 - y) / (1.0 + y)

>>> grad_tanh = grad(tanh) # Obtain its gradient function

>>> grad_tanh(1.9) # Evaluate the gradient at x = 1.0
0.41997434161402603

>>> (tanh(1.0001) - tanh(©.9999)) / ©0.0002 # Compare to finite differences
0.41997434264973155
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Autodiff in Python: Autograd module

>>> from autograd import elementwise_grad as egrad # for functions that vectorize over inputs
>>> import matplotlib.pyplot as plt
>>> x = np.linspace(-7, 7, 200)
>>> plt.plot(x, tanh(x),

x, egrad(tanh)(x), first derivative
x, egrad(egrad(tanh))(x), second derivative
X, egrad(egrad(egrad(tanh)))(x), third derivative
X, egrad(egrad(egrad(egrad(tanh))))(x), fourth derivative

X, egrad(egrad(egrad(egrad(egrad(tanh)))))(x), fifth derivative

T T T T T

X, egrad(egrad(egrad(egrad(egrad(egrad(tanh))))))(x)) sixth derivative

>>> plt.show()

21



Autodiff in Python: PyTorch

import torch
x = torch.ones(2, 2, requires_grad=True) ¢
print(x) y O r{

Out:
tensor([[1., 1.],
[1°) 1']]) Pequires_grad=Tpue)

y =X + 2

z=y*y*3
out = z.mean()
print(z, out)

Out:
tensor([[27., 27.],
[27., 27.]], grad_fn=<MulBackward®>) tensor(27., grad_fn=<MeanBackwardl>)

out.backward()
Out:

tensor([[4.5000, 4.5000],
[4.5000, 4.5000]])
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Backpropagating through a fluid simulation

Navier-Stokes equations
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Applications of autodiff

e Variational Inference
® Deep learning
e Numerical optimization

e Hamiltonian Monte Carlo
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Hamiltonian Monte Carlo

n(q,p) = e~ (4P)

H(q,p) = —logm(p | q) — logm(q)
= K(pq) + Vi(g).
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Hamiltonian Monte Carlo

n(q,p) = e~ (4P)

H(q,p) = —logm(p | q) — logm(q)
= K(pq) + Vi(g).
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Hamiltonian Monte Carlo

e Hamiltonian Monte Carlo (HMC) is vastly more efficient than
Metropolis-Hastings or similar samplers

e Itisthe only method which works in very high-dimensional parameter
spaces

e However, HMC requires gradients of log-probability w.r. to all of the
parameters

® Gradients usually provided by autodiff

® Popular probabilistic modeling frameworks such as Stan and PyMC3

include autodiff libraries
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Further reading

e “Areview of automatic differentiation and its efficient implementation” -
Carles C. Margossian
® |an Murray’s MLPR course notes:

http://www.inf.ed.ac.uk/teaching/courses/mlpr/2018/notes/

e “Automatic Differentiation and Cosmology Simulation” -

https://bids.berkeley.edu/news/automatic-differentiation-and-cosmolog

v-simulation

e http://www.autodiff.org/

e https://pytorch.org/tutorials/beginner/blitz/autograd_tutorial.html
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