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A simple use case: timer

some_code.pc

for iteration in loop:

do something 1

do something 2

stop program
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A simple use case: timer

some_code.pc

for iteration in loop:

start timer 1

do something 1

stop timer 1

start timer 2

do something 2

stop timer 2

output timer 1, 2

stop program
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A basic timer

TICK TOCK

We need 3 variables per timer...

Slide 4 of 27



A simple use case: timer

some_code.pc

create timer 1,2 variables

for iteration in loop:

save time in timer 1 start

do something 1

save time in timer 1 stop

add difference to timer 1 save

save time in timer 2 start

do something 2

save time in timer 1 stop

add difference to timer 2 save

output timer 1 save

output timer 2 save

stop program

...easy to make mistakes...
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Variable groups

We can group variables
together to make things
more organised

e.g. C struct,
F77 COMMON block
(not really),
F90 module, C++ class,
Python class...
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A simple use case: timer

some_code.pc

create timer 1,2 boxes

for iteration in loop:

save time in timer 1 box start

do something 1

save time in timer 1 box stop

add diff to timer 1 box save

save time in timer 2 box start

do something 2

save time in timer 1 box stop

add diff to timer 2 box save

output timer 1 box save

output timer 2 box save

stop program

doesn't really help...
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Using variable groups as variables

VARIABLE PARAMETER
TICK/TOCK FUNCTION

GROUP PARAMETER
TICK/TOCK FUNCTION
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A simple use case: timer

some_code.pc

create timer 1,2 boxes

for iteration in loop:

tick timer 1 box

do something 1

tock timer 1 box

tick timer 2 box

do something 2

tock timer 2 box

output timer 1 box

output timer 2 box

stop program

better, but... we could still
mess with our timer...
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A simple use case: timer

some_code.pc

create timer 1,2 boxes

for iteration in loop:

tick timer 1 box

do something 1

tock timer 1 box

change timer 1 save

tick timer 2 box

do something 2

tock timer 2 box

output timer 1 box

output timer 2 box

stop program

better, but... we could still
mess with our timer...
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Group functions inside group

Since tick/tock functions
only deal with group
variables, we can make
them part of the group

e.g. C++/Python class,
F90 module...
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A simple use case: timer

some_code.pc

create timer 1,2

for iteration in loop:

timer1.tick()

do something 1

timer1.tock()

timer2.tick()

do something 2

timer2.tock()

timer1.output()

timer2.output()

stop program

variables are completely
hidden (and inaccessible)!
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Objects and classes

• Classes/modules group together variables and 
functionality that uses these variables

• Classes OWN their variables: no messing 
around with variables outside the class (unless 
you allow it; you shouldn't)

• Classes hide what happens internally from the 
rest of the program

• An instance of a class/module is an object
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Why should I use this?

• Modularity: keep variables/code logic for a 
specific purpose in a separate place

• Avoids unnecessary code duplication

• Makes typos less likely or more obvious

• Results in more readable code (if member
functions have clear names)

There is more...
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An alternative timer

TICK TOCK

CPUs have a variable clock speed,
we want to measure CPU time
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Alternative timer class

We can simply (yay
modularity!) replace
our tick/tock functions

However, that means
we loose the capability
of measuring real time...
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Abstract classes

We can provide two versions
of the timer class, this is called
inheritance
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Interfaces

A parent class does
not need to implement
any functionality

Different child classes
can be completely
different internally
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Real world examples

http://www-star.st-and.ac.uk/~bv7/CMacIonize_documentation/inherits.html
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Real world examples (2)

http://www-star.st-and.ac.uk/~bv7/CMacIonize_documentation/DensityFunction_8hpp_source.html
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Real world examples (3)

http://www-star.st-and.ac.uk/~bv7/CMacIonize_documentation/HomogeneousDensityFunction_8hpp_source.html
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Why I really like objects (and C++)

• In C++, operators (+, -, *, /...) are also 
functions

• The C++ syntax allows you to overload these 
operators for objects, i.e.
a = b + c;

equals
a = operator+(b, c);
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Why I really like objects (and C++)

• In-place operations (e.g. a += b) are 
overloaded by member functions of the class 
they act on

• We can disguise function calls as basic 
operators

Slide 23 of 27



More real world examples

http://www-star.st-and.ac.uk/~bv7/CMacIonize_documentation/CoordinateVector_8hpp_source.html

http://www-star.st-and.ac.uk/~bv7/CMacIonize_documentation/testCoordinateVector_8cpp_source.html
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More real world examples (2)

http://www-star.st-and.ac.uk/~bv7/CMacIonize_documentation/CCDImage_8hpp_source.html

http://www-star.st-and.ac.uk/~bv7/CMacIonize_documentation/testCCDImage_8cpp_source.html
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Some additional thoughts

• Modularity makes unit testing very easy

• Classes add an abstraction layer to your 
program that makes it more intuitive:

– actions rather than lists of instructions

– logical entities rather than individual variables

• Inheritance makes implementing new 
functionality that is an alternative for existing 
functionality very easy
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Summary

• Classes group together variables and functions 
with a specific functionality

• Classes provide modularity and abstraction to 
your program

• Classes make your code cleaner and easier to 
read and help you avoid making mistakes

• Classes are supported by C++, Python and 
modern Fortran, so no excuse not to use them
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