
Object-oriented programming

Bert Vandenbroucke
bv7@st-andrews.ac.uk



A simple use case: timer

some_code.pc

for iteration in loop:

do something 1

do something 2

stop program

Slide 2 of 27



A simple use case: timer

some_code.pc

for iteration in loop:

start timer 1

do something 1

stop timer 1

start timer 2

do something 2

stop timer 2

output timer 1, 2

stop program

Slide 3 of 27



A basic timer

TICK TOCK

We need 3 variables per timer...

Slide 4 of 27



A simple use case: timer

some_code.pc

create timer 1,2 variables

for iteration in loop:

save time in timer 1 start

do something 1

save time in timer 1 stop

add difference to timer 1 save

save time in timer 2 start

do something 2

save time in timer 1 stop

add difference to timer 2 save

output timer 1 save

output timer 2 save

stop program

...easy to make mistakes...

Slide 5 of 27



Variable groups

We can group variables
together to make things
more organised

e.g. C struct,
F77 COMMON block
(not really),
F90 module, C++ class,
Python class...

Slide 6 of 27



A simple use case: timer

some_code.pc

create timer 1,2 boxes

for iteration in loop:

save time in timer 1 box start

do something 1

save time in timer 1 box stop

add diff to timer 1 box save

save time in timer 2 box start

do something 2

save time in timer 1 box stop

add diff to timer 2 box save

output timer 1 box save

output timer 2 box save

stop program

doesn't really help...

Slide 7 of 27



Using variable groups as variables

VARIABLE PARAMETER
TICK/TOCK FUNCTION

GROUP PARAMETER
TICK/TOCK FUNCTION

Slide 8 of 27



A simple use case: timer

some_code.pc

create timer 1,2 boxes

for iteration in loop:

tick timer 1 box

do something 1

tock timer 1 box

tick timer 2 box

do something 2

tock timer 2 box

output timer 1 box

output timer 2 box

stop program

better, but... we could still
mess with our timer...

Slide 9 of 27



A simple use case: timer

some_code.pc

create timer 1,2 boxes

for iteration in loop:

tick timer 1 box

do something 1

tock timer 1 box

change timer 1 save

tick timer 2 box

do something 2

tock timer 2 box

output timer 1 box

output timer 2 box

stop program

better, but... we could still
mess with our timer...

Slide 10 of 27



Group functions inside group

Since tick/tock functions
only deal with group
variables, we can make
them part of the group

e.g. C++/Python class,
F90 module...

Slide 11 of 27



A simple use case: timer

some_code.pc

create timer 1,2

for iteration in loop:

timer1.tick()

do something 1

timer1.tock()

timer2.tick()

do something 2

timer2.tock()

timer1.output()

timer2.output()

stop program

variables are completely
hidden (and inaccessible)!

Slide 12 of 27



Objects and classes

• Classes/modules group together variables and 
functionality that uses these variables

• Classes OWN their variables: no messing 
around with variables outside the class (unless 
you allow it; you shouldn't)

• Classes hide what happens internally from the 
rest of the program

• An instance of a class/module is an object

Slide 13 of 27



Why should I use this?

• Modularity: keep variables/code logic for a 
specific purpose in a separate place

• Avoids unnecessary code duplication

• Makes typos less likely or more obvious

• Results in more readable code (if member
functions have clear names)

There is more...

Slide 14 of 27



An alternative timer

TICK TOCK

CPUs have a variable clock speed,
we want to measure CPU time

Slide 15 of 27



Alternative timer class

We can simply (yay
modularity!) replace
our tick/tock functions

However, that means
we loose the capability
of measuring real time...

Slide 16 of 27



Abstract classes

We can provide two versions
of the timer class, this is called
inheritance

Slide 17 of 27



Interfaces

A parent class does
not need to implement
any functionality

Different child classes
can be completely
different internally

Slide 18 of 27



Real world examples

http://www-star.st-and.ac.uk/~bv7/CMacIonize_documentation/inherits.html

Slide 19 of 27

http://www-star.st-and.ac.uk/~bv7/CMacIonize_documentation/inherits.html


Real world examples (2)

http://www-star.st-and.ac.uk/~bv7/CMacIonize_documentation/DensityFunction_8hpp_source.html

Slide 20 of 27

http://www-star.st-and.ac.uk/~bv7/CMacIonize_documentation/DensityFunction_8hpp_source.html


Real world examples (3)

http://www-star.st-and.ac.uk/~bv7/CMacIonize_documentation/HomogeneousDensityFunction_8hpp_source.html

Slide 21 of 27

http://www-star.st-and.ac.uk/~bv7/CMacIonize_documentation/HomogeneousDensityFunction_8hpp_source.html


Why I really like objects (and C++)

• In C++, operators (+, -, *, /...) are also 
functions

• The C++ syntax allows you to overload these 
operators for objects, i.e.
a = b + c;

equals
a = operator+(b, c);

Slide 22 of 27



Why I really like objects (and C++)

• In-place operations (e.g. a += b) are 
overloaded by member functions of the class 
they act on

• We can disguise function calls as basic 
operators

Slide 23 of 27



More real world examples

http://www-star.st-and.ac.uk/~bv7/CMacIonize_documentation/CoordinateVector_8hpp_source.html

http://www-star.st-and.ac.uk/~bv7/CMacIonize_documentation/testCoordinateVector_8cpp_source.html

Slide 24 of 27

http://www-star.st-and.ac.uk/~bv7/CMacIonize_documentation/CoordinateVector_8hpp_source.html
http://www-star.st-and.ac.uk/~bv7/CMacIonize_documentation/testCoordinateVector_8cpp_source.html


More real world examples (2)

http://www-star.st-and.ac.uk/~bv7/CMacIonize_documentation/CCDImage_8hpp_source.html

http://www-star.st-and.ac.uk/~bv7/CMacIonize_documentation/testCCDImage_8cpp_source.html

Slide 25 of 27

http://www-star.st-and.ac.uk/~bv7/CMacIonize_documentation/CCDImage_8hpp_source.html
http://www-star.st-and.ac.uk/~bv7/CMacIonize_documentation/testCCDImage_8cpp_source.html


Some additional thoughts

• Modularity makes unit testing very easy

• Classes add an abstraction layer to your 
program that makes it more intuitive:

– actions rather than lists of instructions

– logical entities rather than individual variables

• Inheritance makes implementing new 
functionality that is an alternative for existing 
functionality very easy

Slide 26 of 27



Summary

• Classes group together variables and functions 
with a specific functionality

• Classes provide modularity and abstraction to 
your program

• Classes make your code cleaner and easier to 
read and help you avoid making mistakes

• Classes are supported by C++, Python and 
modern Fortran, so no excuse not to use them

Slide 27 of 27


