
An introduction to Docker

Bert Vandenbroucke
bv7@st-andrews.ac.uk



Problem introduction

Where does your application run?

“The Cloud”

Slide 2 of 26



Problem introduction

Different systems have:

• different operating systems

• different hardware

• different compilers/libraries...

How do you make sure that an 
application/workflow that runs on your 
computer will run on another computer?

Slide 3 of 26



Traditional solution

Test on other systems:

• install a dual boot system, buy a new laptop...

• run another system in VirtualBox (system 
emulation)

• manually install different compilers, libraries... 
and figure out how to use/link them correctly

Slide 4 of 26



New solution

Container: isolated environment that runs
within your operating system

Slide 5 of 26



Containers: advantages

• Lightweight: only relevant libraries and 
applications, no complete OS

• Portable: can be saved (image) and loaded on 
another system

• Isolated from host OS

• Large number of images (100,000+) in online 
container registries on hub.docker.com

Slide 6 of 26



Use case 1: remote analysis

Create analysis scripts
and pipeline on your
own computer

Run the actual analysis
in the same environment
on a large cluster

Slide 7 of 26



Use case 2: code testing

Check that code works with different
compilers and libraries on the same computer

GCC 4.8
Python 2.7

GCC 5.0
Python 3.0

Clang 3.0
Python 2.7

Slide 8 of 26



Use case 3: student labs

Create lab scripts
on your own
computer

Students do the lab in
the same environment

Slide 9 of 26



Docker setup

Detailed instructions for various platforms 
available: https://docs.docker.com/install/

Slide 10 of 26



Docker overview

Creating a container

Loading and running a container

Saving a container

Slide 11 of 26



Docker overview

Creating a container

Loading and running a container

Saving a container

Slide 12 of 26



Creating a container

A new container is always based on an existing 
base container:

• contains basic OS binaries

• contains basic libraries

• can contain specific libraries (e.g. specific 
Python version)

• should be available from an online registry

Slide 13 of 26



Creating a container

Basic command: docker build

Requires a Dockerfile to be present:

• specifies a base container

• sets up new libraries and applications

• creates custom folders and files

• copies files from the host to the container

Slide 14 of 26



Creating a container

Example Dockerfile that sets up a default code 
development environment based on Ubuntu

FROM ubuntu

RUN apt-get update && \

apt-get install gcc git -y

base container

install GCC and git

automatically answer "yes" 
when apt-get asks for permission 

to install new packages

Slide 15 of 26



Creating a container

*first run of command will produce more output

Slide 16 of 26



Creating a container

Check that image was created

Slide 17 of 26



Docker overview

Creating a container

Loading and running a container

Saving a container

Slide 18 of 26



Loading and running a container

Host system: old GCC version
Run an interactive docker container 

based on the image we created

Container: new GCC version

Attach a pseudo-shell to the container

Clean up when we’re done

Slide 19 of 26



Loading and running a container

Connect a second shell to the running 
container in another terminal window

List running containers

Slide 20 of 26



Docker overview

Creating a container

Loading and running a container

Saving a container

Slide 21 of 26



Saving a container

You can create a new image from any running
container using docker commit

This creates a new image that contains all 
changes made in the container since it was 
started (and overwrites the existing image)

If you don't save, all changes are lost!

Slide 22 of 26



Saving a container
Slide 23 of 26



Saving a container

Images can be converted into tar files using 

docker save

These tar files can be copied to other systems to 
run remote containers (using docker load)

Alternatively, you can publish your container in 
an online registry using docker push

Slide 24 of 26



Summary

• Containers are a lightweight alternative for 
system emulation

• Easy to use

• Container images can be ported to other 
systems/hardware...

• EXTRA: container support in workflow 
management systems (see previous talk)

Slide 25 of 26



More information

A huge body of documentation can be found on 
https://docs.docker.com/

But the easiest way to learn Docker is using it!

Slide 26 of 26


