
Computers, supercomputers and
how to use them

Bert Vandenbroucke
bv7@st-andrews.ac.uk

An old computer

MEMORY (RAM)

CPU

Slide 2 of 29

A new computer

Verstocken et al., 2017

Slide 3 of 29

Wait what?

Multicore CPUs

CPU
core core

core core

Multiple individual computing units that share the
same memory connection

Slide 4 of 29

Wait what?

MultiCPU machines

CPU

Multiple individual CPUs that share the same memory
(but with a different memory connection)

MEMORY (RAM)

CPU

Slide 5 of 29

Wait what?

Multinode machines

Multiple individual computers linked together using
a fast communication network

Slide 6 of 29

Parallelization

Shared memory Distributed memory

Locking Communication

Slide 7 of 29

Parallelization

Shared memory

Single program that executes
some tasks using multiple
cores/CPUs

We need to specify which
tasks/instructions can be done
in parallel

We need to make sure
memory is accessed in a
thread-safe way

Distributed memory

Multiple program instances
that can communicate with
each other

We need to make sure each
instance only does part of the
work

We need to add instructions to
communicate relevant data
from one instance to another

Slide 8 of 29

Parallelization

Shared memory

Usually easy to implement

Various standards:

• OpenMP

• PThreads

• C++ threads (since C++11)

• Intel TBB

• ...

Distributed memory

Always hard to do

Only one standard: MPI

Various implementations of
MPI:

• OpenMPI (≠OpenMP!!)

• MPICH

• IntelMPI

• ...

Slide 9 of 29

Parallelization

Shared memory

Only suitable for shared
memory systems

= small systems

= limited by amount of
available memory

Distributed memory

Works on both types of
systems

Only possibility when running
on large systems

Limited by amount of
communication, speed of
network...

Slide 10 of 29

Parallelization

Shared memory

OpenMP example

#pragma omp parallel for

for(int i = 0; i < 100; ++i){

a[i] = b[i] + c[i];

}

!$OMP PARALLEL DO

do j=1,100

a(j) = b(j) + c(j)

end do

!$OMP END PARALLEL DO

Distributed memory

MPI example

MPI_Allgather(a, 25, MPI_DOUBLE, a, 25,
MPI_DOUBLE, MPI_COMM_WORLD)

CALL MPI_ALLGATHER(a, 25
MPI_DOUBLE, a, 25, MPI_DOUBLE,
MPI_COMM_WORLD, ierr)

Slide 11 of 29

GPUs

Individual computing unit with
• small amount of memory
• huge amount of special cores

Cores work using single-instruction-
multiple-data (SIMD) paradigm: all cores
HAVE TO execute the same operation

Huge speedup IF your algorithm can
be rewritten using SIMD

Copying data from and to GPU memory
usually very slow

Slide 12 of 29

GPUs

No standard yet (OpenACC part of OpenMP4?)

Generally three approaches:

• CUDA (NVIDIA)

• OpenCL (Apple)

• OpenGL (free, limited support)

GPU clusters still need MPI to do communication

Slide 13 of 29

Vectorization

Modern CPU cores have support for SIMD
instructions

In principle, the compiler should automatically
identify eligible code and optimize

Unfortunately, compilers are very bad at this

There are special instructions (AVX) to manually
improve vectorization

Slide 14 of 29

Terminology

Thread: shared memory parallel unit

Process: distributed memory parallel unit

Core: smallest individual computing unit

Node: largest computing unit with single
memory

CPU: not generally used as computing term

Slide 15 of 29

Terminology

Strong scaling: how much faster your code runs
when using more cores for the same problem
size
(ideally: cores x2 = time / 2)

Weak scaling: how much slower your code runs
when using more cores for the same load per
core
(ideally: cores x2 + problem x2 = same time)

Slide 16 of 29

Examples

BV, in prep. (future Code & Cake talk?)

Slide 17 of 29

Terminology

Serial fraction: fraction of algorithm that cannot
be done in parallel

Overhead: extra work that needs to be done to
run in parallel

Load imbalance: overhead due to cores/nodes
waiting for other cores/nodes to finish

Slide 18 of 29

Example

BV & Wood, 2018

Slide 19 of 29

Example

BV, in prep. (future Code & Cake talk?)

Slide 20 of 29

Terminology

Computation bound: algorithm is limited by
how fast computations can be executed

Memory bound: algorithm is limited by how fast
data flows from memory to core

Communication bound: (parallel) algorithm is
limited by how fast data is communicated

Slide 21 of 29

General remarks

• OpenMP is a very easy way to get a
reasonable speed up for programs that run on
your computer/a single node remote machine

• MPI can be more efficient than OpenMP on a
shared memory system (depends on memory
layout, very hard to predict)

• Hybrid algorithms use a combination of
OpenMP + MPI

Slide 22 of 29

General remarks

• Hyperthreading: OS runs 2 threads on a single
core: sometimes more efficient (depends on
algorithm)

• Clock speed: speed of cores can depend on
how many cores are being used

Slide 23 of 29

What can go wrong?

Shared memory parallelization:

• race condition: multiple threads writing to the
same memory block at the same time

• deadlock: thread locks a variable and does not
unlock it

Distributed memory parallelization:

• deadlock: process sends a message that is not
received or received in the wrong order

Slide 24 of 29

How can I debug/profile?

• Proprietary (licensed) software: Intel VTune,
AMD CodeAnalyst, Apple Inc. Shark...

• No general open-source/free alternatives

• GCC/LLVM compiler suites contain some tools,
like e.g. a thread-sanitizer

• Run serial debugger/profiler in parallel

Slide 25 of 29

Conclusion

• Modern computers are always parallel in
some way

• Supercomputers are definitely highly parallel

Slide 26 of 29

Conclusion

• Shared memory parallelization allows you to
use multiple computing units (cores) on the
same memory

• Distributed memory parallelization allows you
to use multiple computing units that have
separate memories and are connected
through some type of network (nodes)

Slide 27 of 29

Conclusion

• Which type of parallelism you want to use
depends on

– the system (single node/multinode?)

– the algorithm

– the problem size (does it fit in single node
memory?)

– how much time you have to implement it

Slide 28 of 29

Also...

Every OS supports running multiple programs in
parallel (very efficiently)

So if you can split your problem into many small
problems, that is almost guaranteed to be the
most efficient strategy

Workflow Management Systems (see previous
talk) can help you run many jobs in parallel

Slide 29 of 29

